
Hall effect in spinor condensates

Mathieu Taillefumier,1 Eskil K. Dahl,1 Arne Brataas,1 and Walter Hofstetter2

1Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
2Institut für Theoretische Physik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt/Main, Germany

�Received 9 June 2009; published 28 July 2009�

We consider a neutral spinor condensate moving in a periodic magnetic field. The spatially dependent
magnetic field induces an effective spin-dependent Lorentz force, which in turn gives rise to a spin-dependent
Hall effect. Simulations of the Gross-Pitaevskii equation quantify the Hall effect. We discuss possible experi-
mental realizations.
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In 1879, Edwin Hall discovered that charges in a thin
metallic plate exposed to a perpendicular magnetic field ac-
cumulate transverse to applied electric and magnetic fields.
This Hall effect is used intensively to characterize metals and
semiconductors. Modern interest in Hall effects started with
the experimental discovery of the quantum Hall effect in
two-dimensional electrons gases �2DEGs� and the seemingly
disconnected notion of Berry curvature1 and non-Abelian
gauge field.2 Currently these notions explain the integer and
fractional quantum Hall effect in 2DEG, the anomalous Hall
effect �AHE� in ferromagnetic metals or semiconductors, and
the spin analog known as spin Hall effect �SHE�.3

Three mechanisms contribute to the AHE. Two of them,
the side-jump4 and the skew scattering,5 result from carrier
scattering off impurities while the Karplus-Luttinger term,6

also known as Berry curvature contribution, is related to
spin-orbit coupling or nontrivial magnetic order7 in the band
structure. The latter contribution has attracted considerable
theoretical attention although it is very difficult to study ex-
perimentally in ferromagnetic compounds because of the ad-
ditional contributions from impurities or defects.

The realization of Bose-Einstein condensation in mag-
netic or optical trap opens up the possibility of research at
the border between atomic and condensed-matter physics.
Analogies between condensates in rotating magnetic traps
and electrons in strong magnetic fields allow studies of the
integer and fractional quantum Hall states.8,9 Recently, the
realization of spin-dependent optical lattices in combination
with cold atomic gases10 offers the possibility to study spin-
dependent transport phenomena. The neutrality of these
gases, i.e., the absence of a classical Lorentz force and the
absence of impurity scattering, allows one to study the spin
Hall effect11–16 and the Berry curvature contribution of the
AHE14 in a clean and controllable environment. So far, the
single-particle approximation is often used to explain the
AHE and SHE in cold atomic gases.11,13,14 Although the
single-particle approximation can be used to describe quali-
tatively the AHE in multicomponent condensates, two-body
interactions should be included in the theory for a quantita-
tive description of the Hall effect.

Magnetic microtraps17 might also be used to study the
AHE and SHE in Bose condensates. In this case, the Zeeman
effect leads to a coupling between the spin of the atoms and
the magnetic field of the microtrap. Various geometries of
magnetic field distributions including one-dimensional mag-
netic lattices have been explored experimentally,17 and two-

dimensional magnetic lattices can be created using array of
magnetic cylinders18 or magnetic dots for instance.

In this Rapid Communication, we investigate the Hall ef-
fect in spinor condensates where the magnetic field is created
by a two-dimensional array of magnetic cylinders. The mo-
tion of the condensate through the magnetic lattice generates
a non-Abelian gauge field that acts on the condensate as an
effective spin-dependent Lorentz force.19 Similar to the case
of fermions,20 we first study the case where the two-body
interactions are negligible. Then we study numerically the
effect of the velocity of the condensate and of the nonlinear
interactions on the Hall effect. Finally we propose an experi-
mental setup where this effect can be observed.

Let us consider a quasi-two-dimensional spinor conden-
sate of spin F moving in a magnetic field B�r� created by a
2D array of magnetic cylinders. The Hamiltonian describing
this system is21–23

H =� d2r��
†�r���−

�2

2M
�r

2 + V�r����� + �B�r� · F���

+ 	
s=0

F 
2��2a2s

Maz
�P2s�������

†�r����r�����r� �1�

components of the quantum field operator 	�r�, and P2s is
the projection operator that projects the spin state of the at-
oms pair into the total spin state 2s. Fl=x,y,z are matrices of
spin F, and the constants a2s are the s-wave scattering
lengths of the total spin channel 2s=0,2 , . . . ,2F. For sim-
plicity, we neglect the quadratic Zeeman term in Eq. �1�
since it is usually three to four orders of magnitude smaller
than the linear Zeeman term.24 The confinement in the z
direction appears in the Hamiltonian via the oscillator length
az=
� /M
z, where 
z=2�fz where fz is the frequency of
the trap along the z direction and M is the mass of the atoms.
The scalar potential V�r� describes any external trap poten-
tial. Following Ref. 20, we apply a rotation T�r� of the quan-
tization axis along the direction n�r� of the magnetic field
B�r� to Eq. �1�. The transformed Hamiltonian becomes
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HT =� d2r��
†�r���−

�2

2M
��r − iAg�r��2 + V�r�����

+ �B�r��Fz
�� + 	

s=0

F 
2��2a2s

Maz
�P2s�������

†�r����r�����r� ,

�2�

where Ag�r�=−iT†�r��rT�r�=Ag
i �r�Fi where i=x ,y ,z is the

spin-dependent gauge field resulting from the rotation of the
spin axis. Explicit expressions for Ag

i �r� �i=x ,y ,z� can be
found in Ref. 25. The two-body interactions are not affected
by the gauge transformation because they are short ranged
and the projection operators are invariant against any rota-
tion of the spin axis of both particles. Excluding the two-
body interactions, Eq. �2� is a generalization of Eq. �2� of
Ref. 20 for both fermions and bosons. The present work has
two additional ingredients, the nonlinear interactions and the
relaxation of the adiabaticity condition. The non-Abelian
gauge field Ag�r� contains terms that are proportional to Fx

and Fy that induce transitions between the different spin-
polarized states.

Approximate analytical calculations: let us initially as-
sume that the spin-flip transitions can be neglected, i.e., that
the spin adiabatically follows the magnetic field direction
n�r�. This approximation will be lifted later on. In contrast to
F=1 /2, the expansion of Eq. �2� gives rise to two spin-flip
terms that are proportional to Ag�r� and Ag�r� ·Ag�r�. The
adiabatic approximation is valid when the two parameters,
which represent the ratio between the spin-flip contributions
and the Zeeman splitting, �1= �v

2�z
�1 and �2= �2

2M�2z
�1, are

fulfilled. The constant v is the group velocity of the particles,
� is a characteristic length of variations in n�r�, and z is the
Zeeman splitting. The two-body interactions are included in
Eq. �2� through a spin-spin interaction term that can be de-
composed into a scalar and a spin-dependent contribution.22

The typical energy scale of the scalar interatomic interaction
component is of the order of magnitude of the Zeeman split-
ting. The spin-dependent part of the two-body interactions,
on the other hand, can be neglected because it is two to three
orders of magnitude smaller than the scalar contribution. For
this semiclassical analysis, we neglect the two-body interac-
tions and assume that the spinor condensate is in a spin-
polarized state m� �−F , . . . ,F�. The effective Hamiltonian
can be written as

Heff =� d3r�m
† �r�� �2

2M
�− i�r + mAg

z�r��2 + V�r�

+ m�B�r����m�r� . �3�

There is a difference between bosons and fermions. For fer-
mions, all spin-polarized states are affected by the gauge
field Ag

z�r� while for bosons, the spin-polarized state m=0 is
not affected by the magnetic texture. So for m�0 the field
bg�r�=��Ag

z�r�=�ijkni�xnj�ynk acts on the spin-polarized
state as an ordinary magnetic field on a fictitious charge q
=me �−e is the electron charge� and then gives rise to an

effective Lorentz force19 that can induce a Hall effect.
For a qualitative analysis, we consider the case where the

average value of the field bg�r��s over one unit cell acts on
the dynamics of the condensate. First, the average value
bg�r��s=4�n /S with �n�Z� and S as the surface of the unit
cell, is quantized and depends only on few geometrical pa-
rameters such as the type and the period of the lattice. This
value can be modified by applying a small constant magnetic
field on top of the magnetic distribution.20 Second, the spa-
tial dependence of the field bg�r� and the potential �B�r�� are
treated phenomenologically as causing momentum scattering
that is characterized by the relaxation time �. We consider
moreover that the condensate is under the influence of a
force F=F0x where F0 is the amplitude. Such forces can be
induced by gravity for instance. The dynamics of the center
of mass of the spin-polarized state is described by

M
dv�
dt

= F0x − m� v�
�

+ �v� � bg�s� , �4�

where v� is the center-of-mass velocity of the polarized
state. The solutions of Eq. �4� are simple and the wave-
packet trajectories go from closed orbits when there is no
scattering and no force to open orbits when scattering and/or
external force are present. One can also show that the quan-
tity �xy = vy� /F0 is similar to the Drude formula of the Hall
conductivity component. The Hall effect is stronger when the
spin F increases or the surface of the unit cell decreases.

Numerical simulations: a quantitative study of the Hall
effect in this systems can be done by solving Eq. �1� numeri-
cally using mean-field theory. The order parameters of the
spinor condensate, which are the expectation values of the
field operators ���r�, obey the time-dependent Gross-
Pitaevskii �TDGP� equation obtained from Eq. �1� by substi-
tuting ���r� by its average. We solve the TDGP equation
using an explicit Runge-Kutta method of order 6 coupled to
the fast Fourier transform for the spatial derivatives. For the
magnetic field distribution, we consider a square lattice of
magnetic cylinders.

The initial state of the system is obtained in the following
way. We first calculate the ground state of a spinor conden-
sate of spin F=1 composed of 2000 atoms of rubidium26 in
an harmonic trap with 
x=
y =2��50 Hz �
z=2�
�1000 Hz�. Then the condensate is shifted to one side of
the trap and the wave function is multiplied by a phase factor
exp�ivx� where v is the group velocity. At t=0 the conden-
sate is released from the harmonic trap and is able to move
freely through the magnetic lattice.

To characterize the Hall effect, we calculate the ratio be-
tween the transverse and longitudinal velocity,

vy�m/vx�m = �xy/�xx, �5�

where m indicates the initial polarization of the condensate at
t=0 �in the global quantization axis which is along the z
axis� and vi=x,y�m is the average value of the velocity opera-
tor. �xy and �xx are the transverse and longitudinal “conduc-
tivities.” This ratio corresponds physically to the tangential
of the angle between the electrical field and the velocity in
the case of electronic systems. For convenience, we express
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all quantities in reduced units x→axx with ax=
 �

M
x

�1.59 �m and the energy �→��
x. Finally we choose the
following set of parameters of the magnetic field. The period
of B�r� is p=7.5ax, the amplitude is B=10�
x, and the dis-
tance separating the condensate from the surface of the mag-
netic array is h=1.5ax.

The dynamical behavior of the TDGP equation is visual-
ized in Fig. 1 which represents the ballistic trajectory of the
center of mass of the Bose condensate �Fig. 1�a�� and the
Hall angle �Fig. 1�b�� for different values of the initial veloc-
ity. Figure 1�a� shows that the trajectory of the condensate
prepared in the state m=1 is curved in the y direction be-
cause of the action of the gauge field on the dynamics of the
condensate as qualitatively described by Eq. �3�. Figure 1�b�
represents the time dependence of the ratio vy�m=1 / vx�m=1.
It shows pronounced oscillations at early stages of the evo-
lution that can be understood qualitatively by considering the
sign of the effective Lorentz force that is acting on the con-
densate. Since the size of the condensate is smaller than the
size of the unit cell, part of the condensate will experience a
positive Lorentz force while its complementary part will ex-
perience a negative Lorentz force. Due to the distribution of
particles in the condensate and the different topology of the
regions where the field bg�r� is positive or negative, the Lor-
entz force changes sign when the condensate is moving
through the lattice and the y component of the group velocity
oscillates with time. The oscillations of vy�m=1 / vx�m=1
quickly disappear when t increases because �i� the conden-
sate expands and �ii� the magnetization is not conserved so
the mean-field state describing the condensate tends to a state
with equipartition in populations �n�1,0=1 /3�. Numerical
simulations show that these oscillations remain when the size
of the unit cell is smaller than the size of the condensate, as
it should be expected.

The dynamical properties of the system can be separated
into two different regimes; the adiabatic regime where the
spin-polarized state follows adiabatically B�r� as described
by our approximate analytical calculations and a second re-
gime that is dominated by the spin-flip terms. The adiabatic
regime can be identified at early time of the evolution of the
condensate by calculating the ratio vy� / vx� for the spin-
polarized states m=1 and m=−1. In this case, Eq. �3� shows
that the two angles should differ by a sign, which can be seen
on the left part of Fig. 2. This behavior is not peculiar to
Bose condensates and should be observable with fermionic
atomic gases or electron gases provided that the gas is ini-
tially fully polarized and there is no disorder. As expected
from Eq. �3�, there should be no Hall effect for the polar state
�m=0�, which can also be observed in Fig. 2. Figure 2 shows
that vy�0 / vx�0 of an initial polar state fluctuates around
zero. These fluctuations are not affected by the spin-
dependent part of the two-body interactions but are related to
the spin-flip contributions of the gauge field Ag�r�. At longer
time �right part Fig. 2�, the dynamics of the condensate is
governed by the spin-flip terms, and the description of the
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FIG. 3. �upper panel� Schematic dependence of the Hall conduc-
tivity when a constant magnetic field is applied on the top of the
magnetic lattice. The abrupt changes in vy�1 / vx�1 are related to the
flux of bg�r�, which changes sign at a peculiar value of B0. �lower
panel� Numerical results for the ratio vy�1 / vx�1�5
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FIG. 1. �a� Transverse position as a function of longitudinal
coordinate of the center of mass of a F=1 condensate for t
x�5
and different values of the initial group velocity v �in units of ax
x�.
�b� Time dependence of the ratio of average transverse and longi-
tudinal velocity. The initial state is prepared in the ferromagnetic
state m=1.
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FIG. 2. Time dependence of the ratio vy� / vx� calculated for
different initial polarizations and fixed initial velocity v=6. The
vertical lines indicate the separation between the adiabatic regime
where spin-flip contributions are negligible from the regime where
they dominate the dynamics of the condensate.
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Hall effect in terms of the adiabatic approximation in Eq. �3�
is not valid anymore.

Finally, we study the influence of a small constant mag-
netic field of amplitude B0 applied on top of the magnetic
lattice in the direction perpendicular to the plane of motion.
Contrary to Ref. 20, which consider the electronic case, there
is no classical Hall effect because the atoms are neutral.
Therefore the features of the anomalous Hall effect are easily
observed in Bose condensates. In the semiclassical limit, i.e.,
when the spatial dependence of the gauge field is neglected,
the variations in the Hall angle are abrupt because the aver-
age value of bg�r� can only change at peculiar values of B0,
which depends on the lattice. Such variations are schemati-
cally represented on the upper panel of Fig. 3. The general
behavior described in the upper panel of Fig. 3 can be repro-
duced numerically using the full time-dependent GP equa-
tion, but the variations in the ratio vy� / vx� are continuous
rather than abrupt �lower panel of Fig. 3�. The numerical
simulations also show that the Hall effect decreases rapidly
when the amplitude of the constant magnetic field increases.

To experimentally verify this theory, we propose to image

the motion of a spin-polarized condensate during its evolu-
tion in a microtrap with an additional periodic 2d magnetic
field and deduce the ratio vy� / vx� by direct measurement of
the velocity. The magnetic lattice can be created using arrays
of magnetic cylinders or by patterning lattices of intercon-
nected current loops. The condensate can be accelerated
through gravity by tilting the microtrap.

To conclude, we have shown that spinor condensates in a
magnetic lattice can be used to explore the geometrical phase
contribution of the anomalous Hall effect. We found that this
contribution is characterized by an adiabatic regime, which is
valid in the short time limit and a long time regime where
spin-flip processes dominate the condensate dynamics. We
also demonstrated that the AHE is strongly affected by an
additional constant external magnetic field.
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